A353864 Number of rucksack partitions of n: every consecutive constant subsequence has a different sum.
1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 25, 33, 39, 51, 65, 82, 101, 126, 154, 191, 232, 284, 343, 416, 496, 600, 716, 855, 1018, 1209, 1430, 1691, 1991, 2345, 2747, 3224, 3762, 4393, 5116, 5946, 6897, 7998, 9257, 10696, 12336, 14213, 16343, 18781, 21538, 24687, 28253, 32291, 36876, 42057
Offset: 0
Keywords
Examples
The a(0) = 1 through a(7) = 11 partitions: () (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (1111) (221) (51) (61) (311) (222) (322) (11111) (321) (331) (411) (421) (111111) (511) (2221) (4111) (1111111)
Crossrefs
Programs
-
Mathematica
msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Select[msubs[#],SameQ@@#&]&]],{n,0,30}]
Extensions
a(50)-a(53) from Robert Price, Apr 03 2025
Comments