A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.
1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 16: {1,1,1,1} 20: {1,1,3} 30: {1,2,3} 32: {1,1,1,1,1} 56: {1,1,1,4} 64: {1,1,1,1,1,1} 90: {1,2,2,3} 128: {1,1,1,1,1,1,1} 140: {1,1,3,4} 176: {1,1,1,1,5} 210: {1,2,3,4} 256: {1,1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; norqQ[m_]:=Sort[m]==Range[0,Max[m]]; msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]]; Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]
Comments