This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353872 #42 Aug 04 2022 16:09:56 %S A353872 12,29,49,69,108,120,203,243,285,382,404,453,592,645,677,788,848,996, %T A353872 1140,1149,1241,1365,1779,1796,1797,1857,2032,2236,2649,2704,2812, %U A353872 2870,3143,3188,3388,3443,3525,3831,4372,4379,4592,4799,4911,5204,5364,5520,5814 %N A353872 Numbers k such that the arithmetic differential equation m'' - m'm + k = 0 has exactly one positive solution in m with two prime factors (counted with multiplicity). %C A353872 This is a second-order nonlinear ADE. It is known that many linear second-order ADEs have infinitely many solutions (A334261), but nonlinear cases haven't been studied. %H A353872 Nathan Mabey, <a href="https://drive.google.com/file/d/1XLmndd9TBYff15kszUTgIvlFqoInLrSo/view?usp=sharing">C Script</a> %e A353872 k = 12 is in the sequence, since for m = 4, we have m' = m'' = 4, so m'm - m'' = 16 - 4 = 12 = k. %o A353872 (C) See Link %o A353872 (MATLAB) %o A353872 function a = A353872( max_pow_2 ) %o A353872 a = []; %o A353872 maxad2 = ad(ad(2^max_pow_2)); %o A353872 for m = 1:2^max_pow_2 %o A353872 if length(factor(m)) == 2 %o A353872 d = ad(m); b = ad(d); c = d*m; %o A353872 k(m) = b - c; %o A353872 end %o A353872 end %o A353872 for n = 1:length(k) %o A353872 if k(n) > -maxad2; %o A353872 if isempty(find(a == k(n),1)) %o A353872 if 1 == length(find(k == k(n))) %o A353872 a = [a k(n)]; %o A353872 end %o A353872 end %o A353872 end %o A353872 end %o A353872 a = sort(-a); %o A353872 end %o A353872 function y = ad( x ) %o A353872 y = 0; %o A353872 if(x > 1) %o A353872 p = factor(x); pu = unique(p); %o A353872 for n = 1:length(pu); %o A353872 y = y + (x*length(find(p == pu(n))))/pu(n); %o A353872 end %o A353872 end %o A353872 end % _Thomas Scheuerle_, Jun 15 2022 %Y A353872 Cf. A003415 (n'), A068346 (n''), A334261 (2m'' - m' - 4 = 0). %K A353872 nonn %O A353872 1,1 %A A353872 _Nathan Mabey_, May 08 2022 %E A353872 More terms from _Jinyuan Wang_, Jun 15 2022