A353879 Number of tilings of a 4 X n rectangle using right trominoes, dominoes and 1 X 1 tiles.
1, 5, 189, 3633, 83374, 1817897, 40220893, 886130549, 19546906987, 431024540644, 9505433227293, 209617856008535, 4622624792880217, 101940750143038657, 2248057208102711472, 49575464007447758483, 1093267021618939507743, 24109360928450426884813, 531673668551361276666101
Offset: 0
Examples
a(2)=189. The number of tilings (mirroring included) using r trominoes ___ ___ ___ ___ r=1: | _| | _| | |_| |_2_| r=0: 71 = A030186(4) |_|_| |_| | |___| |_ | | 7 | |3|_| | 7 | |3|_| |___| |___| |___| |___| 4*7 + 4*3 + 4*7 + 4*6 = 92 ___ ___ ___ ___ ___ ___ ___ r=2: | _| | _| | _| | _| | _| | |_| | |_| |_| | |_|2| |_|_| |_|_| |_|_| |___| |___| |___| | |_| | _|_|_| | |_ | |_ | | _| |_2_| |___| |_|_| |___| |_|_| |_|_| |_|_| 4*2 + 2*2 + 4*1 + 2*1 + 4*1 + 2*1 + 2*1 = 26 Result: a(2) = 71+92+26 = 189. Legend: ___ ___ ___ |_2_| stands for |___| or |_|_| _ _ _ _ _|3| _| | _|_| _|_| |___| stands for |_|_| or |___| or |_|_| ___ ___ ___ ___ ___ ___ ___ ___ | 7 | |___| |_|_| |___| | | | |_| | | |_| |_|_| |___| stands for |___|,|___|,|_|_|,|_|_|,|_|_|,|_|_| or |_|_|
Links
- Index entries for linear recurrences with constant coefficients, signature (14,183,-37,-1929,2419,-212,-333,25,15).
Programs
-
Maxima
See A352589.
Formula
G.f.: (1 - 9*x - 64*x^2 + 109*x^3 + 39*x^4 + 41*x^5 + 12*x^6 - 7*x^7 - 2*x^8) / (1 - 14*x - 183*x^2 + 37*x^3 + 1929*x^4 - 2419*x^5 + 212*x^6 + 333*x^7 - 25*x^8-15*x^9).
a(n) = 14*a(n-1) + 183*a(n-2) - 37*a(n-3) - 1929*a(n-4) + 2419*a(n-5) - 212*a(n-6) - 333*a(n-7) + 25*a(n-8) + 15*a(n-9).
Comments