cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353881 Expansion of e.g.f. 1/(1 + (x * log(1-x))^3 / 36).

This page as a plain text file.
%I A353881 #13 May 09 2022 15:19:15
%S A353881 1,0,0,0,0,0,20,210,1960,18900,194880,2166780,26356880,349806600,
%T A353881 5029088064,77748751080,1284349422720,22551300670080,419191223208384,
%U A353881 8222848137607680,169760091173740800,3679746265902067200,83564915096633308800,1984162781781147770880
%N A353881 Expansion of e.g.f. 1/(1 + (x * log(1-x))^3 / 36).
%F A353881 a(n) = n! * Sum_{k=0..floor(n/6)} (3*k)! * |Stirling1(n-3*k,3*k)|/(36^k * (n-3*k)!).
%o A353881 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(x*log(1-x))^3/36)))
%o A353881 (PARI) a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*(n-3*k)!));
%Y A353881 Cf. A052830, A353880, A353882.
%Y A353881 Cf. A346922, A353884.
%K A353881 nonn
%O A353881 0,7
%A A353881 _Seiichi Manyama_, May 09 2022