cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353882 Expansion of e.g.f. 1/(1 - (x * log(1-x))^4 / 576).

This page as a plain text file.
%I A353882 #12 May 09 2022 15:19:22
%S A353882 1,0,0,0,0,0,0,0,70,1260,17850,242550,3350655,48108060,724403680,
%T A353882 11478967500,191632761320,3369643717440,62346624827760,
%U A353882 1212116258480400,24721764604046280,528066880710319440,11793526736005503720,274937000436908714520
%N A353882 Expansion of e.g.f. 1/(1 - (x * log(1-x))^4 / 576).
%F A353882 a(n) = n! * Sum_{k=0..floor(n/8)} (4*k)! * |Stirling1(n-4*k,4*k)|/(576^k * (n-4*k)!).
%o A353882 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*log(1-x))^4/576)))
%o A353882 (PARI) a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*(n-4*k)!));
%Y A353882 Cf. A052830, A353880, A353881.
%Y A353882 Cf. A346923, A353885.
%K A353882 nonn
%O A353882 0,9
%A A353882 _Seiichi Manyama_, May 09 2022