A353887 Squarefree numbers of the form k^2 + k + 1 for some k >= 0.
1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 381, 421, 463, 553, 601, 651, 703, 757, 813, 871, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653, 2757
Offset: 1
Examples
4^2 + 4 + 1 = 21 = 3 * 7 is squarefree, so 21 belongs to this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025).
- Stoyan Ivanov Dimitrov, Square-free values of n^2+n+1, Georgian Mathematical Journal, Vol. 30, No. 3 (2023), pp. 333-348; arXiv preprint, arXiv:2205.02488 [math.NT], 2022-2023.
Programs
-
Mathematica
Select[Table[n^2 + n + 1, {n, 0, 52}], SquareFreeQ] (* Amiram Eldar, Dec 11 2023 *)
-
PARI
for (k=0, 52, if (issquarefree(m=k^2+k+1), print1 (m", ")))
Comments