cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353892 Expansion of e.g.f. exp( -(x * log(1-x))^3 / 36 ).

This page as a plain text file.
%I A353892 #11 May 10 2022 11:41:02
%S A353892 1,0,0,0,0,0,20,210,1960,18900,194880,2166780,26172080,342599400,
%T A353892 4835694864,73208215080,1183011385920,20318534134080,369549843420384,
%U A353892 7094851788127680,143377043010268800,3042204544957939200,67621161484919380800,1571319471977711258880
%N A353892 Expansion of e.g.f. exp( -(x * log(1-x))^3 / 36 ).
%F A353892 a(n) = n! * Sum_{k=0..floor(n/6)} (3*k)! * |Stirling1(n-3*k,3*k)|/(36^k * k! * (n-3*k)!).
%o A353892 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(x*log(1-x))^3/36)))
%o A353892 (PARI) a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*k!*(n-3*k)!));
%Y A353892 Cf. A066166, A353891, A353893.
%Y A353892 Cf. A347002, A353881, A353895.
%K A353892 nonn
%O A353892 0,7
%A A353892 _Seiichi Manyama_, May 09 2022