cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353893 Expansion of e.g.f. exp( (x * log(1-x))^4 / 576 ).

This page as a plain text file.
%I A353893 #10 May 10 2022 11:40:31
%S A353893 1,0,0,0,0,0,0,0,70,1260,17850,242550,3350655,48108060,724403680,
%T A353893 11478967500,191601229820,3367499575440,62253354650760,
%U A353893 1208755315895400,24611454394536780,524613603866302440,11687734234226039220,271715852337632107020
%N A353893 Expansion of e.g.f. exp( (x * log(1-x))^4 / 576 ).
%F A353893 a(n) = n! * Sum_{k=0..floor(n/8)} (4*k)! * |Stirling1(n-4*k,4*k)|/(576^k * k! * (n-4*k)!).
%o A353893 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*log(1-x))^4/576)))
%o A353893 (PARI) a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*k!*(n-4*k)!));
%Y A353893 Cf. A066166, A353891, A353892.
%Y A353893 Cf. A347003, A353882, A353896.
%K A353893 nonn
%O A353893 0,9
%A A353893 _Seiichi Manyama_, May 09 2022