This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353904 #9 May 23 2022 17:46:22 %S A353904 1,3,2,5,4,7,6,11,8,13,9,14,23,10,21,16,25,12,29,15,22,17,20,19,24,31, %T A353904 18,35,26,33,28,37,40,27,32,41,30,43,34,45,38,47,36,49,51,44,39,46,53, %U A353904 42,55,48,59,61,50,63,52,67,54,65,56,69,58,71,57,62,73,60,77,64,75,68,79,66,83,70,81 %N A353904 a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared that is coprime to a(n-1), does not equal a(n-1)+1, and differs from a(n-1) at every digit. %C A353904 The sequence is conjectured to be a permutation of the positive integers. %H A353904 Scott R. Shannon, <a href="/A353904/a353904.png">Image of the first 100000 terms</a>. The green line is y = n. %e A353904 a(13) = 23 as a(12) = 14, and 23 has not yet appeared, is coprime to 14, is not 1 more than 14, and differs at every digit from 14. Note that 17 satisfies all of these conditions except the last. This is the first term to differ from A093714. %o A353904 (Python) %o A353904 from math import gcd %o A353904 from itertools import islice %o A353904 def c(san, k): %o A353904 sk = str(k) %o A353904 return all(sk[-1-i]!=san[-1-i] for i in range(min(len(san), len(sk)))) %o A353904 def agen(): # generator of terms %o A353904 an, aset, mink = 1, {1}, 2 %o A353904 while True: %o A353904 yield an %o A353904 k, san = mink, str(an) %o A353904 while k in aset or gcd(an, k) != 1 or k-an == 1 or not c(san, k): %o A353904 k += 1 %o A353904 an = k %o A353904 aset.add(an) %o A353904 while mink in aset: mink += 1 %o A353904 print(list(islice(agen(), 77))) # _Michael S. Branicky_, May 23 2022 %Y A353904 Cf. A353780, A093714, A068861, A109812. %K A353904 nonn,base %O A353904 1,2 %A A353904 _Scott R. Shannon_, May 10 2022