This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353909 #104 Jul 12 2023 11:53:03 %S A353909 -1,1,-3,6,-5,5,-7,20,-9,9,-11,30,-13,13,-15,72,-17,33,-19,54,-21,21, %T A353909 -23,100,-25,25,-27,78,-29,45,-31,208,-33,33,-35,198,-37,37,-39,180, %U A353909 -41,65,-43,126,-45,45,-47,360,-49,145,-51,150,-53,153,-55,260,-57,57,-59 %N A353909 a(n) is the alternating sum of the sequence gcd(n, k^2), 1 <= k <= n. %H A353909 Michael S. Branicky, <a href="/A353909/b353909.txt">Table of n, a(n) for n = 1..10000</a> %H A353909 Project Euler, <a href="https://projecteuler.net/problem=795">Problem 795: Alternating gcd sum</a>, (2022) %H A353909 Laszlo Toth, <a href="https://www.cs.uwaterloo.ca/journals/JIS/VOL14/Toth/toth9.html">Weighted gcd-sum functions</a>, J. Integer Sequences, 14 (2011), Article 11.7.7. %F A353909 a(n) = Sum_{i=1..n} (-1)^i*gcd(n, i^2). %F A353909 a(n) = -n if n is odd. %F A353909 a(n) = n * Sum_{d|n, d even} (phi(d) * sqrt(d/core(d)) / d), where phi = A000010, if n is even. - _Darío Clavijo_, Jan 13 2023 %p A353909 a:= n-> add((-1)^i*igcd(n, i^2), i=1..n): %p A353909 seq(a(n), n=1..60); # _Alois P. Heinz_, Jan 13 2023 %t A353909 a[n_] := Sum[(-1)^i * GCD[n, i^2], {i, 1, n}]; Array[a, 100] (* _Amiram Eldar_, May 10 2022 *) %o A353909 (PARI) a(n) = sum(i=1, n, (-1)^i*gcd(n, i^2)); \\ _Michel Marcus_, May 10 2022 %o A353909 (PARI) a(n) = { %o A353909 if((n%2)==1, return(-n)); %o A353909 my(s=0); %o A353909 fordivfactored(n, d, %o A353909 if((d[1]%2)==0, %o A353909 s+=eulerphi(d)*core(d,1)[2]/d[1])); %o A353909 s*n; %o A353909 } \\ _Yurii Ivanov_, Jun 20 2022 %o A353909 (Python) %o A353909 from math import gcd %o A353909 def a(n): %o A353909 return -n if n%2==1 else sum((-1)**k*gcd(n, k*k) for k in range(1, n+1)) %o A353909 print([a(n) for n in range(1, 60)]) # _Michael S. Branicky_, May 28 2022 %o A353909 (Python) %o A353909 from sympy import sqrt, divisors, totient %o A353909 from sympy.ntheory.factor_ import core %o A353909 def a(n): %o A353909 return -n if n & 1 == 1 else int(n * sum(totient(d) * sqrt(d // core(d)) / d for d in divisors(n) if d & 1 == 0)) %o A353909 # _Darío Clavijo_, Dec 29 2022 %Y A353909 Cf. A078430, A245717, A007913, A000010. %K A353909 sign %O A353909 1,3 %A A353909 _Thomas Baeyens_, May 10 2022