cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353920 Decimal expansion of the first positive real root of ((1 - sqrt(5))*((1 + sqrt(5)) /2)^x - (1 + sqrt(5))*((1 - sqrt(5))/2)^x)/(2*sqrt(5)).

Original entry on oeis.org

8, 1, 6, 1, 9, 7, 6, 4, 0, 3, 0, 7, 0, 4, 4, 3, 9, 5, 0, 8, 6, 0, 3, 0, 9, 8, 9, 8, 4, 8, 7, 3, 3, 2, 6, 5, 7, 4, 2, 8, 7, 7, 2, 8, 0, 1, 3, 4, 6, 5, 7, 1, 8, 2, 9, 0, 5, 0, 3, 9, 1, 7, 2, 2, 9, 8, 5, 5, 2, 1, 0, 5, 9, 5, 2, 2, 5, 9, 3, 8, 5, 4, 3, 3, 4, 5, 0, 3, 6, 5, 1, 4, 1, 2, 1, 6, 2, 6, 6, 0, 3, 8, 5, 8, 2
Offset: 0

Views

Author

Peter Luschny, May 11 2022

Keywords

Comments

The constant is the abscissa of the first intercept point of the row functions for x > 0 of the generalized Fibonacci function A353595, see illustration.

Examples

			0.816197640307044395086030989848733265742877280134657182905...
		

Crossrefs

Programs

  • Maple
    sphi := x -> ((1-sqrt(5))*((1+sqrt(5))/2)^x - (1 + sqrt(5))*((1 - sqrt(5))/2)^x)/ (2*sqrt(5)):
    Digits := 120: fsolve(Re(sphi(x)) = 0, x, 0.7..0.9, fulldigits)*10^105:
    ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    sphi[x_] := 2 Re[ Exp[-I Pi x / 2] Sin[(x - 1)(Pi / 2 - I ArcCsch[2])]] / Sqrt[5];
    x /. FindRoot[Sphi[x], {x, 0.8}, WorkingPrecision -> 120]
    RealDigits[%, 10, 105][[1]]

Formula

Equals the first positive real root of 2*exp(-I*Pi*x/2)*sin((x - 1)*(Pi/2 - I * arccsch(2))) / sqrt(5).