cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353921 a(n) = n if n < 4, otherwise floor(abs(z(n))) where z(n) = (2^(2*n + 1/2) - 1)*(4*n + 1)*zeta(1/2 - 2*n).

This page as a plain text file.
%I A353921 #8 May 16 2022 04:32:05
%S A353921 0,1,2,3,20,202,2953,58574,1517830,49788988,2016610506,98842394546,
%T A353921 5766037456673,394787840828770,31350291022336674,2858009622374873775,
%U A353921 296454369597967332107,34715387135986234970960,4557676382296459474148951,666708107998151285537770827
%N A353921 a(n) = n if n < 4, otherwise floor(abs(z(n))) where z(n) = (2^(2*n + 1/2) - 1)*(4*n + 1)*zeta(1/2 - 2*n).
%C A353921 a(n) gives an integer valued definition of what may be called a 'Genocchi half integer', i.e. it tries to give the expression 'G(n + 1/2)' a meaning, where G(n) = A110501(n) are the Genocchi numbers. Consider also the sequence of Genocchi median numbers A005439.
%F A353921 A005439(n-1) <= a(n) <= A005439(n).
%F A353921 A110501(n) <= a(n) <= A110501(n+1).
%F A353921 a(n) ~ ((2*n)/(exp(1)*Pi))^(2*n)*(11/6 + 8*n - 23/(576*n)).
%p A353921 z := n -> (2^(2*n + 1/2) - 1)*(4*n + 1)*Zeta(1/2 - 2*n):
%p A353921 a := n -> ifelse(n < 4, n, floor(abs(z(n)))):
%p A353921 seq(floor(evalf(a(n))), n = 0..19);
%Y A353921 Cf. A005439, A110501.
%K A353921 nonn
%O A353921 0,3
%A A353921 _Peter Luschny_, May 14 2022