cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353927 Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} mu(n)*x^n, where mu = A008683.

This page as a plain text file.
%I A353927 #4 May 11 2022 22:46:51
%S A353927 1,-1,0,-1,-1,2,-4,4,-7,8,-10,9,-5,-6,19,-40,70,-110,138,-158,154,-93,
%T A353927 -70,355,-797,1408,-2160,2925,-3479,3399,-2080,-1299,7593,-17673,
%U A353927 32014,-49928,68683,-82847,82807,-53620,-24942,176293,-422887,777264,-1226688,1710686,-2093347
%N A353927 Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} mu(n)*x^n, where mu = A008683.
%C A353927 Inverse weigh transform of the Moebius function (A008683).
%t A353927 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = MoebiusMu[n] - b[n, n - 1]; Table[a[n], {n, 1, 47}]
%Y A353927 Cf. A008683, A320781, A353926.
%K A353927 sign
%O A353927 1,6
%A A353927 _Ilya Gutkovskiy_, May 11 2022