This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353930 #10 Feb 06 2023 08:53:59 %S A353930 1,2,11,183,5871,375775,48099263,12313411455,6304466665215, %T A353930 6455773865180671,13221424875890015231,54154956291645502388223, %U A353930 443637401941159955564326911,7268555193403964711965932118015,238176016577461115681699663643131903,15609103422420491677315869156516292427775 %N A353930 Smallest number whose binary expansion has n distinct run-sums. %C A353930 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). %H A353930 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a> %e A353930 The terms, binary expansions, and standard compositions begin: %e A353930 1: 1 (1) %e A353930 2: 10 (2) %e A353930 11: 1011 (2,1,1) %e A353930 183: 10110111 (2,1,2,1,1,1) %e A353930 5871: 1011011101111 (2,1,2,1,1,2,1,1,1,1) %e A353930 375775: 1011011101111011111 (2,1,2,1,1,2,1,1,1,2,1,1,1,1,1) %t A353930 qe=Table[Length[Union[Total/@Split[IntegerDigits[n,2]]]],{n,1,10000}]; %t A353930 Table[Position[qe,i][[1,1]],{i,Max@@qe}] %o A353930 (PARI) a(n) = {my(t=1); if(n==2, t<<=1, for(k=3, n, t = (t<<k) + (2^(k-1)-1))); t} \\ _Andrew Howroyd_, Jan 01 2023 %Y A353930 Essentially the same as A215203. %Y A353930 For prime indices instead of binary expansion we have A006939. %Y A353930 For lengths instead of sums of runs we have A165933 = firsts in A165413. %Y A353930 Numbers whose binary expansion has all distinct runs are A175413. %Y A353930 For standard compositions we have A246534, firsts of A353849. %Y A353930 For runs instead of run-sums we have A350952, firsts of A297770. %Y A353930 These are the positions of first appearances in A353929. %Y A353930 A005811 counts runs in binary expansion. %Y A353930 A242882 counts compositions with distinct multiplicities. %Y A353930 A318928 gives runs-resistance of binary expansion. %Y A353930 A351014 counts distinct runs in standard compositions. %Y A353930 A353835 counts partitions with all distinct run-sums, weak A353861. %Y A353930 A353864 counts rucksack partitions. %Y A353930 Cf. A044813, A073093, A181819, A304442, A353743, A353840, A353841, A353842, A353847, A353848, A353850, A353853, A353932, A354582. %K A353930 nonn %O A353930 1,2 %A A353930 _Gus Wiseman_, Jun 07 2022 %E A353930 Offset corrected and terms a(7) and beyond from _Andrew Howroyd_, Jan 01 2023