cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353938 Smallest b > 1 such that b^(p-1) == 1 (mod p^5) for p = prime(n).

This page as a plain text file.
%I A353938 #11 May 18 2022 07:55:05
%S A353938 33,242,1068,1353,27216,109193,15541,133140,495081,1115402,2754849,
%T A353938 1353359,649828,3228564,2359835,4694824,7044514,28538377,1111415,
%U A353938 77588426,16178110,2553319,9571390,158485540,18664438,146773512,45639527,448251412,48834112,141076650
%N A353938 Smallest b > 1 such that b^(p-1) == 1 (mod p^5) for p = prime(n).
%t A353938 a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^5] != 1, b++]; b]; Array[a, 12] (* _Amiram Eldar_, May 12 2022 *)
%o A353938 (PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^5)^(p-1)==1, return(b)))
%o A353938 (Python)
%o A353938 from sympy import prime
%o A353938 from sympy.ntheory.residue_ntheory import nthroot_mod
%o A353938 def A353938(n): return 2**5+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**5,True)[1]) # _Chai Wah Wu_, May 17 2022
%Y A353938 Row k = 5 of A257833.
%Y A353938 Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353939 (k=6), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10).
%K A353938 nonn
%O A353938 1,1
%A A353938 _Felix Fröhlich_, May 12 2022