This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353939 #17 May 18 2022 07:55:23 %S A353939 65,728,1068,34967,284995,861642,390112,333257,2818778,42137700, %T A353939 8078311,33518159,92331463,21583010,138173066,8202731,390421192, %U A353939 1006953931,77622331,270657300,5915704483,522911165,2507851273,1329885769,2789067613,3987072867,7938255646 %N A353939 Smallest b > 1 such that b^(p-1) == 1 (mod p^6) for p = prime(n). %t A353939 a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^6] != 1, b++]; b]; Array[a, 9] (* _Amiram Eldar_, May 12 2022 *) %o A353939 (PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^6)^(p-1)==1, return(b))) %o A353939 (Python) %o A353939 from sympy import prime %o A353939 from sympy.ntheory.residue_ntheory import nthroot_mod %o A353939 def A353939(n): return 2**6+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**6,True)[1]) # _Chai Wah Wu_, May 17 2022 %Y A353939 Row k = 6 of A257833. %Y A353939 Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353938 (k=5), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10). %K A353939 nonn %O A353939 1,1 %A A353939 _Felix Fröhlich_, May 12 2022 %E A353939 a(25)-a(27) from _Jinyuan Wang_, May 17 2022