cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353940 Smallest b > 1 such that b^(p-1) == 1 (mod p^7) for p = prime(n).

This page as a plain text file.
%I A353940 #20 May 18 2022 07:55:26
%S A353940 129,2186,32318,82681,758546,6826318,21444846,44702922,178042767,
%T A353940 393747520,1548729003,4741156070,2203471139,3242334565,16609835418,
%U A353940 114175761515,30338830655,20115543070,114457309347,370162324382,57877856575,12692933349,280646695286,127762186531
%N A353940 Smallest b > 1 such that b^(p-1) == 1 (mod p^7) for p = prime(n).
%o A353940 (PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^7)^(p-1)==1, return(b)))
%o A353940 (Python)
%o A353940 from sympy import prime
%o A353940 from sympy.ntheory.residue_ntheory import nthroot_mod
%o A353940 def A353940(n): return 2**7+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**7,True)[1]) # _Chai Wah Wu_, May 17 2022
%Y A353940 Row k = 7 of A257833.
%Y A353940 Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353938 (k=5), A353939 (k=6), A353941 (k=8), A353942 (k=9), A353943 (k=10).
%K A353940 nonn
%O A353940 1,1
%A A353940 _Felix Fröhlich_, May 12 2022
%E A353940 a(9)-a(11) from _Amiram Eldar_, May 12 2022
%E A353940 More terms from _Jinyuan Wang_, May 17 2022