cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353945 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.

This page as a plain text file.
%I A353945 #6 May 13 2022 09:59:55
%S A353945 1,1,0,0,-1,1,-1,0,1,-2,0,1,-1,-2,2,1,-2,-2,2,0,-4,0,3,-3,3,-3,-2,-1,
%T A353945 1,8,-15,0,17,-14,-1,-3,9,-5,-18,23,-10,-18,24,-17,-17,18,27,-48,-37,
%U A353945 72,45,-119,-11,148,-98,-28,65,-57,24,-95,213,-363,-173,704,-435
%N A353945 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.
%F A353945 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} x^n / (1 - x^n).
%t A353945 A[m_, n_] := A[m, n] = Which[m == 1, DivisorSigma[0, n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 65]
%Y A353945 Cf. A000005, A320779, A328775, A353923, A353947, A353948, A353949.
%K A353945 sign
%O A353945 1,10
%A A353945 _Ilya Gutkovskiy_, May 12 2022