cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353954 a(0) = 1; a(n) = A019565(A109812(n)).

This page as a plain text file.
%I A353954 #18 Jul 01 2025 08:56:13
%S A353954 1,2,3,5,6,7,10,21,11,15,14,33,35,22,105,13,30,77,26,55,42,65,66,91,
%T A353954 110,39,70,143,210,17,165,182,51,154,195,34,231,130,119,330,221,462,
%U A353954 85,78,385,102,455,187,390,1309,19,770,663,38,1155,442,57,910,561,95,273
%N A353954 a(0) = 1; a(n) = A019565(A109812(n)).
%C A353954 Interpretation of A109812(n) written in binary instead as if written in "multiplicity notation", that is, as if we write 1 if divisible by prime(k+1), otherwise 0 in the k-th place. Example, decimal 12 is written in binary as 1100 = 2^2 + 2^3, and take exponents 2 and 3 and instead construe them as prime(2+1) * prime(3+1) = 5*7 = 35.
%C A353954 Permutation of squarefree numbers A005117.
%H A353954 Michael De Vlieger, <a href="/A353954/b353954.txt">Table of n, a(n) for n = 0..10000</a>
%H A353954 Michael De Vlieger, <a href="/A353954/a353954.png">Annotated log log scatterplot of a(n)</a>, n = 1..2^14, with records in red and local minima in blue, highlighting primes in green and fixed points in gold.
%F A353954 a(0) = 1; a(n) = Product p_k where A109812(n) = Sum 2^(k-1) for n > 0.
%e A353954 Table showing n, A109812(n), and b(n), the binary expansion of A109812(n) writing "." for zeros for clarity. a(n) interprets 1's in the k-th place of b(n) as prime(k+1) and thereafter takes the product. We find a(n) = A005117(j). Note that A109812(0) is not defined.
%e A353954    n A109812(n) b(n)  a(n)   j
%e A353954   ----------------------------
%e A353954    0     -        .     1    1
%e A353954    1     1        1     2    2
%e A353954    2     2       1.     3    3
%e A353954    3     4      1..     5    4
%e A353954    4     3       11     6    5
%e A353954    5     8     1...     7    6
%e A353954    6     5      1.1    10    7
%e A353954    7    10     1.1.    21   14
%e A353954    8    16    1....    11    8
%e A353954    9     6      11.    15   11
%e A353954   10     9     1..1    14   10
%e A353954   11    18    1..1.    33   21
%e A353954   12    12     11..    35   23
%e A353954   13    17    1...1    22   15
%e A353954   14    14     111.   105   65
%e A353954   15    32   1.....    13    9
%e A353954   16     7      111    30   19
%e A353954   ...
%t A353954 Clear[c, a]; nn = 60; c[_] = 0; a[0] = c[1] = j = 1; a[1] = u = 2; Do[k = u; While[Nand[c[k] == 0, BitAnd[j, k] == 0], k++]; If[k == u, While[c[u] > 0, u++]]; j = k; Set[{a[i], c[k]}, {Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ IntegerDigits[k, 2]], i}], {i, 2, nn}]; Array[a, nn + 1, 0]
%Y A353954 Cf. A005117, A019565, A109812.
%K A353954 nonn
%O A353954 0,2
%A A353954 _Michael De Vlieger_, May 12 2022