This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353987 #21 Aug 12 2025 12:41:39 %S A353987 1,51,130,996,3224,4287,9951,12676,72004,53812945,141422620 %N A353987 Numbers k such that F(k), F(k+1) and F(k+2) have the same binary weight (A000120), where F(k) is the k-th Fibonacci number (A000045). %C A353987 Numbers k such that A011373(k) = A011373(k+1) = A011373(k+2). %C A353987 The corresponding values of A011373(k) are 1, 17, 42, 354, 1110, 1490, 3451, 4383, 24988, 18678035, ... %e A353987 1 is a term since A011373(1) = A011373(2) = A011373(3) = 1. %e A353987 51 is a term since A011373(51) = A011373(52) = A011373(53) = 17. %t A353987 s[n_] := s[n] = DigitCount[Fibonacci[n], 2, 1]; Select[Range[10^4], s[#] == s[# + 1] == s[# + 2] &] %o A353987 (PARI) hf(k) = hammingweight(fibonacci(k)); \\ A011373 %o A353987 isok(k) = my(h=hf(k)); (h == hf(k+1)) && (h == hf(k+2)); \\ _Michel Marcus_, May 13 2022 %o A353987 (Python) %o A353987 # if Python version < 3.10, replace c.bit_count() with bin(c).count('1') %o A353987 from itertools import islice %o A353987 def A353987_gen(): # generator of terms %o A353987 b, c, k, ah, bh = 1, 2, 1, 1, 1 %o A353987 while True: %o A353987 if ah == (ch := c.bit_count()) == bh: %o A353987 yield k %o A353987 b, c, ah, bh = c, b+c, bh, ch %o A353987 k += 1 %o A353987 A353987_list = list(islice(A353987_gen(),7)) # _Chai Wah Wu_, May 14 2022 %Y A353987 Cf. A000045, A000120, A011373. %Y A353987 Subsequence of A353986. %K A353987 nonn,base,more %O A353987 1,2 %A A353987 _Amiram Eldar_, May 13 2022 %E A353987 a(11) from _Dennis Yurichev_, Jul 10 2024