cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353993 Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^(1/(1-x)).

This page as a plain text file.
%I A353993 #29 Aug 06 2022 10:14:22
%S A353993 1,1,8,63,668,7850,115914,1847286,34031024,682177464,15049816200,
%T A353993 357564279600,9212847784392,252552128708568,7395084613746816,
%U A353993 229412209982127480,7524339637608261120,259675490280634374720,9418707076419411194304,357606237255136232451264
%N A353993 Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^(1/(1-x)).
%F A353993 a(0) = 1; a(n) = Sum_{k=1..n} A353992(k) * binomial(n-1,k-1) * a(n-k).
%o A353993 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-k*x^k)^(1/(1-x))))
%o A353993 (PARI) a353992(n) = n!*sum(k=1, n, sumdiv(k, d, (k/d)^d/d));
%o A353993 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a353992(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A353993 Cf. A006906, A353992, A356335, A356337, A356408.
%K A353993 nonn
%O A353993 0,3
%A A353993 _Seiichi Manyama_, Aug 06 2022