This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353995 #18 Aug 03 2025 18:23:57 %S A353995 1,0,2,6,30,185,1315,10682,97692,991797,11060413,134368344,1766007122, %T A353995 24963786003,377633418279,6086719267852,104134471945368, %U A353995 1884698592318537,35976835400864745,722386383476096128,15220456179011671358,335769403850849998439 %N A353995 Expansion of e.g.f. 1/(1 - x)^(exp(x) - 1). %H A353995 Seiichi Manyama, <a href="/A353995/b353995.txt">Table of n, a(n) for n = 0..449</a> %F A353995 E.g.f.: exp( -log(1 - x) * (exp(x) - 1) ). %F A353995 a(0) = 1; a(n) = Sum_{k=1..n} A052863(k) * binomial(n-1,k-1) * a(n-k). %F A353995 a(n) ~ n! * n^(exp(1)-2) / Gamma(exp(1)-1) * (1 - (exp(1)-2)*exp(1)*log(n)/n). - _Vaclav Kotesovec_, May 13 2022 %t A353995 With[{nn=30},CoefficientList[Series[1/(1-x)^(Exp[x]-1),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Aug 03 2025 *) %o A353995 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(exp(x)-1))) %o A353995 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x)*(exp(x)-1)))) %Y A353995 Cf. A052863, A191365, A353994. %K A353995 nonn %O A353995 0,3 %A A353995 _Seiichi Manyama_, May 13 2022