cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353996 Rooted simple digraphs on n unlabeled vertices.

This page as a plain text file.
%I A353996 #6 May 13 2022 10:45:18
%S A353996 1,4,36,752,45960,9133760,6154473664,14334221970688,
%T A353996 117222686206799936,3412369204476033220608,
%U A353996 357745172369222114451432448,136400229481294592916607770361856,190697841181900458854914389940360337408
%N A353996 Rooted simple digraphs on n unlabeled vertices.
%C A353996 Loops and parallel edges are not permitted.
%C A353996 There are four ways that a vertex other than the root can be joined to the root: only towards, only away, both, neither. Remove the root and color the remaining vertices by four colors corresponding to how they were joined to the root. This gives a bijection with 4-colored digraphs on n-1 vertices, which is A329874(n-1,4).
%F A353996 a(n) = A329874(n-1,4).
%p A353996 with(Iterator):
%p A353996 RootedDig := proc(n)
%p A353996         local i,j,ptn,ans,a,orb2,orb4,hasptn,nextptn;
%p A353996    (hasptn,nextptn) := ModuleIterator(PartitionPartCount(n-1));
%p A353996    ans := 0;
%p A353996    while hasptn() do
%p A353996       ptn := nextptn();
%p A353996       a := 1 / mul(j^ptn[j]*ptn[j]!,j=1..n-1);
%p A353996       orb2 := add(ptn[j],j=2..n-1,2);
%p A353996       orb4 := add(ptn[j]*j/2,j=2..n-1,2)
%p A353996          + add(ptn[j]*(j+1)/2,j=1..n-1,2)
%p A353996          + add(ptn[j]*(ptn[j]-1)*j/2,j=1..n-1)
%p A353996          + add(add(ptn[i]*ptn[j]*igcd(i,j),i=1..j-1),j=2..n-1);
%p A353996       ans := ans + a*2^orb2*4^orb4;
%p A353996    end do;
%p A353996    ans;
%p A353996 end proc;
%Y A353996 Cf. A329874.
%K A353996 nonn
%O A353996 1,2
%A A353996 _Brendan McKay_, May 13 2022