cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353997 Partial sums of A078473.

This page as a plain text file.
%I A353997 #10 Mar 28 2025 07:40:48
%S A353997 1,1,1,6,12,12,12,12,22,22,46,46,46,46,46,67,67,67,107,137,137,137,
%T A353997 137,137,168,168,168,168,228,228,292,292,292,292,292,342,342,342,342,
%U A353997 342,426,426,426,546,606,606,606,606,656,656,656,656,656,656,800,800,800
%N A353997 Partial sums of A078473.
%H A353997 Amiram Eldar, <a href="/A353997/b353997.txt">Table of n, a(n) for n = 1..10000</a>
%H A353997 Michael Baake and Robert V. Moody, <a href="http://dx.doi.org/10.4153/CJM-1999-057-0">Similarity submodules and root systems in four dimensions</a>, Canad. J. Math., Vol. 51, No. 6 (1999), pp. 1258-1276; <a href="https://arxiv.org/abs/math/9904028">arXiv preprint</a>, arXiv:math/9904028 [math.MG], 1999.
%H A353997 Vaclav Kotesovec, <a href="/A353997/a353997.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A353997 a(n) = Sum_{k=1..n} A078473(k).
%F A353997 a(n) ~ c*n^2 where c = 2*Pi^4*log(phi)/375 = 0.2499968345... and phi is the golden ratio (1+sqrt(5))/2 (A001622) (Baake and Moody, 1999).
%t A353997 f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]]
%Y A353997 Cf. A001622, A078473.
%K A353997 nonn
%O A353997 1,4
%A A353997 _Amiram Eldar_, May 13 2022