This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354009 #93 Jul 16 2022 17:16:30 %S A354009 1,2,3,1,1,1,4,5,1,1,1,1,1,6,2,2,2,7,1,1,1,1,1,1,1,8,9,3,3,3,1,1,1,1, %T A354009 1,1,1,1,1,10,2,2,2,2,2,11,1,1,1,1,1,1,1,1,1,1,1,12,4,4,4,13,1,1,1,1, %U A354009 1,1,1,1,1,1,1,1,1,14,2,2,2,2,2,2,2,15,5,5,5,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A354009 Irregular triangle read by rows in which row n lists the partitions of n into an odd number of equal parts, in nonincreasing order. %C A354009 The number of partitions in row n equals A001227(n), the number of odd divisors of n, and equals the number of partitions of n into consecutive parts, and equals the number of subparts in the symmetric representation of sigma(n). %C A354009 The sum of row n equals A245579(n), the sum of all parts of all partitions of n into consecutive parts. %C A354009 The length of row n equals A000593(n), the sum of the odd divisors of n. %C A354009 Row n has length 1 if and only if n is a power of 2. %C A354009 Is the right border the same as A006519? %e A354009 Triangle begins: %e A354009 [1]; %e A354009 [2]; %e A354009 [3], [1,1,1]; %e A354009 [4]; %e A354009 [5], [1,1,1,1,1]; %e A354009 [6], [2,2,2]; %e A354009 [7], [1,1,1,1,1,1,1]; %e A354009 [8]; %e A354009 [9], [3,3,3], [1,1,1,1,1,1,1,1,1]; %e A354009 [10], [2,2,2,2,2]; %e A354009 [11], [1,1,1,1,1,1,1,1,1,1,1]; %e A354009 [12], [4,4,4]; %e A354009 [13], [1,1,1,1,1,1,1,1,1,1,1,1,1]; %e A354009 [14], [2,2,2,2,2,2,2]; %e A354009 [15], [5,5,5], [3,3,3,3,3], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; %e A354009 [16]; %e A354009 ... %e A354009 For n = 10, in row 10 there are two partitions, equaling the number of odd divisors of 10, they are [1, 5], and equaling the number of partitions of 10 into consecutive parts, they are [10], [4, 3, 2, 1], and equaling the number of subparts in the symmetric representation of sigma(10), they are [9, 9]. %e A354009 The sum of row 10 is [10] + [2 + 2 + 2 + 2 + 2] = 20 equaling the sum of all parts of all partitions of 10 into consecutive parts, that is [10] + [4 + 3 + 2 + 1] = 20. %e A354009 The length of row 10 is equal to 6 equaling the sum of the odd divisors of 10, that is 1 + 5 = 6. %t A354009 Table[ConstantArray[n/#, #] & /@ Select[Divisors[n], OddQ], {n, 15}] // Flatten (* _Michael De Vlieger_, Jul 15 2022 *) %o A354009 (PARI) row(n) = my(v=[]); fordiv(n, d, if ((n/d)%2, v = concat(v, vector(n/d, k, d)))); Vecrev(v); \\ _Michel Marcus_, Jul 16 2022 %Y A354009 Subsequence of A244051. %Y A354009 The number of partitions in row n equals A001227(n). %Y A354009 Row lengths give A000593. %Y A354009 Row sums give A245579. %Y A354009 Column 1 gives A000027. %Y A354009 Cf. A000079, A000203, A006519, A237593, A279387 (subparts), A299765. %K A354009 nonn,tabf %O A354009 1,2 %A A354009 _Omar E. Pol_, Jul 13 2022