cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354012 Number of tilings of a 4 X n rectangle using 2 X 2 tiles, right trominoes and dominoes.

Original entry on oeis.org

1, 1, 17, 81, 702, 4623, 35044, 248045, 1819731, 13110984, 95362462, 690253391, 5008926698, 36300216768, 263252448712, 1908449014617, 13837881924141, 100326715619679, 727420462629671, 5274035027493046, 38238994112367061, 277246970248002472, 2010151423463689959
Offset: 0

Views

Author

Gerhard Kirchner, May 14 2022

Keywords

Comments

For tiling algorithm, see A351322.

Examples

			a(2)=17, mirroring included (h: horizontal, v: vertical):
    v     v          h,v                      v           h
   ___   ___   ___   ___   ___   ___   ___   ___   ___   ___
  |   | |   | |   | |___| |___| | | | |___| |___| |___| |  _|
  |___| |___| |___| |_  | |___| |_|_| | | | |___| |   | |_| |
  |___| | | | |   | | |_| |___| | | | |_|_| | | | |___| | |_|
  |___| |_|_| |___| |___| |___| |_|_| |___| |_|_| |___| |___|
    2  +  2  +  1  +  4  +  1  +  1  +  1  +  2  +  1  +  2  = 17.
		

Crossrefs

Programs

Formula

G.f.: (1 - 4*x - 16*x^2 + 37*x^3 + 32*x^4 - 34*x^5 + 4*x^6 + 2*x^7 - 2*x^8) / (1 - 5*x - 28*x^2 + 69*x^3 + 142*x^4 - 194*x^5 - 78*x^6 + 57*x^7 + 36*x^8 - 70*x^9 + 32*x^10).
a(n)=5*a(n-1) + 28*a(n-2) - 69*a(n-3) - 142*a(n-4) + 194*a(n-5) + 78*a(n-6) - 57*a(n-7) - 36*a(n-8) + 70*a(n-9) - 32*a(n-10).