This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354015 #26 May 15 2022 07:08:43 %S A354015 1,1,4,18,106,750,6188,58184,613156,7149780,91319712,1267089912, %T A354015 18969355656,304646227704,5222700792528,95169251327040, %U A354015 1836450816902928,37403582826055824,801728489886598848,18037821249349491360,424970923585819603872,10462258547232790348512 %N A354015 Expansion of e.g.f. 1/(1 - x)^(1 - log(1-x)). %F A354015 E.g.f.: exp( -log(1-x) * (1 - log(1-x)) ). %F A354015 a(0) = 1; a(n) = Sum_{k=1..n} A000776(k-1) * binomial(n-1,k-1) * a(n-k) = (n-1)! * Sum_{k=1..n} (1 + 2*Sum_{j=1..k-1} 1/j) * a(n-k)/(n-k)!. %F A354015 a(n) = Sum_{k=0..n} A047974(k) * |Stirling1(n,k)|. %o A354015 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(1-log(1-x)))) %o A354015 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x)*(1-log(1-x))))) %o A354015 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (1+2*sum(k=1, j-1, 1/k))*v[i-j+1]/(i-j)!)); v; %o A354015 (PARI) a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*abs(stirling(n, k, 1))); %Y A354015 Cf. A000776, A047974, A189423, A353995, A354013. %K A354015 nonn %O A354015 0,3 %A A354015 _Seiichi Manyama_, May 14 2022