This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354019 #12 Jan 25 2023 09:59:12 %S A354019 1,6,18,-288,-1890,41472,324324,-7962624,-67343562,1751777280, %T A354019 15489019260,-417368899584,-3797625904020,104791699095552, %U A354019 972776481568200,-27305722735755264,-257250740550710490,7314721255213498368,69699818292739559820 %N A354019 G.f. A(x) satisfies: A(x)^3 = 36*x + 1/A(x)^3. %F A354019 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A354019 (1) A(x)^3 = 18*x + sqrt(1 + 324*x^2). %F A354019 (2) A(x)^3 = 36*x + 1/A(x)^3. %F A354019 (3) A(x)^3 = x / Series_Reversion( x/sqrt(1 - 36*x) ). %F A354019 (4) A(x) = 1/(1 - 36*x/A(x)^3)^(1/6). %F A354019 (5) A( x/sqrt(1 - 36*x) ) = 1/(1 - 36*x)^(1/6). %F A354019 (6) A(x)*A(-x) = 1. %F A354019 (7) A'(x) = 6*A(x) / sqrt(1 + 324*x^2). %F A354019 (8) A(x) = exp( Integral 6/sqrt(1 + 324*x^2) dx ). %F A354019 a(n) ~ cos(Pi*(n/2 - 2/3)) * 2^(n + 1/2) * 3^(2*n - 1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, May 15 2022 %F A354019 D-finite with recurrence n*(n-1)*a(n) +36*(3*n-5)*(3*n-7)*a(n-2)=0. - _R. J. Mathar_, Jan 25 2023 %e A354019 G.f.: A(x) = 1 + 6*x + 18*x^2 - 288*x^3 - 1890*x^4 + 41472*x^5 + 324324*x^6 - 7962624*x^7 - 67343562*x^8 + ... %e A354019 where A(x)^3 = 36*x + 1/A(x)^3, as seen by comparing the following series: %e A354019 A(x)^3 = 1 + 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + 97629963228*x^10 + ... %e A354019 1/A(x)^3 = 1 - 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + ... %o A354019 (PARI) my(x='x+O('x^22)); Vec((18*x + sqrt(1 + 324*x^2))^(1/3)) %o A354019 (PARI) {a(n) = my(A = (18*x + sqrt(1 + 324*x^2 +x*O(x^n)) )^(1/3)); polcoeff(A,n)} %o A354019 for(n=0,21, print1(a(n),", ")) %o A354019 (PARI) {a(n) = my(A = (x / serreverse( x/sqrt(1 - 36*x +x*O(x^n)) ))^(1/3)); polcoeff(A,n)} %o A354019 for(n=0,21, print1(a(n),", ")) %o A354019 (PARI) {a(n) = my(A = exp( intformal( 6/sqrt(1 + 324*x^2 +x*O(x^n)) ))); polcoeff(A,n)} %o A354019 for(n=0,21, print1(a(n),", ")) %K A354019 sign %O A354019 0,2 %A A354019 _Paul D. Hanna_, May 14 2022