cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354046 Number of 4-dimensional chiral point groups of order n.

This page as a plain text file.
%I A354046 #17 May 16 2022 10:02:45
%S A354046 1,2,3,6,4,10,5,17,8,14,7,27,8,18,14,37,10,31,11,36,18,26,13,71,17,30,
%T A354046 22,46,16,56,17,73,26,38,26,78,20,42,30,86,22,72,23,66,42,50,25,147,
%U A354046 30,67,38,76,28,88,38,108,42,62,31,142,32,66,55,134,44
%N A354046 Number of 4-dimensional chiral point groups of order n.
%C A354046 In other words, the number of (finite) subgroups of order n of the special orthogonal group SO(4).
%D A354046 John H. Conway and Derek A. Smith, On Quaternions and Octonions, CRC Press, 2003.
%D A354046 Patrick Du Val, Homographies, Quaternions and Rotations. Clarendon Press, 1964.
%H A354046 Laith Rastanawi and Günter Rote, <a href="/A354046/b354046.txt">Table of n, a(n) for n = 1..10000</a>
%H A354046 Edouard Goursat, <a href="https://doi.org/10.24033/asens.317">Sur les substitutions orthogonales et les divisions régulières de l'espace</a>, Annales scientifiques de l'E.N.S. 3e série, 6:9-102, 1889.
%H A354046 A. C. Hurley, <a href="https://doi.org/10.1017/S0305004100027109">Finite rotation groups and crystal classes in four dimensions</a>, Mathematical Proceedings of the Cambridge Philosophical Society, 47(4):650-661, 1951.
%H A354046 Laith Rastanawi and Günter Rote, <a href="https://arxiv.org/abs/2205.04965">Towards a Geometric Understanding of the 4-Dimensional Point Groups</a>, arXiv preprint arXiv:2205.04965 [math.MG], 2022.
%H A354046 Laith Rastanawi and Günter Rote, <a href="https://github.com/LaisRast/point-groups/blob/main/generate_oeis_sequences.sage">Sage code used to generate the sequence</a>.
%H A354046 W. Threlfall and H. Seifert, <a href="https://doi.org/10.1007/BF01457920">Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes</a>, Math. Annalen, 104:1-70, 1931.
%H A354046 W. Threlfall and H. Seifert, <a href="https://doi.org/10.1007/BF01448910">Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß)</a>, Math. Annalen, 107:543-586, 1933.
%Y A354046 Cf. A353341.
%K A354046 nonn
%O A354046 1,2
%A A354046 _Laith Rastanawi_ and _Günter Rote_, May 16 2022