cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).

This page as a plain text file.
%I A354051 #13 May 20 2022 05:59:49
%S A354051 1,5,7,8,4,7,7,5,7,9,6,6,7,1,3,6,8,3,8,3,1,8,0,2,2,1,9,3,2,4,5,7,1,9,
%T A354051 2,3,5,0,4,6,6,7,2,2,1,7,3,2,7,2,9,1,3,2,7,5,8,7,4,8,6,6,4,5,7,9,3,8,
%U A354051 0,8,4,4,8,0,6,1,6,8,1,1,1,7,4,5,7,3,1,9,4,3,5,4,1,6,6,6,2,8,6,3,8,3,1,6,6
%N A354051 Decimal expansion of Sum_{k>=0} 1 / (k^4 + 1).
%C A354051 Apart from leading digits the same as A256920. - _R. J. Mathar_, May 20 2022
%F A354051 Equals 1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))).
%e A354051 1.578477579667136838318022193245719235046672217327291327587486645793808...
%p A354051 evalf(1/2 + (Pi*(sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi))) / (2*sqrt(2)*(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))), 105);
%t A354051 RealDigits[Chop[N[Sum[1/(k^4 + 1), {k, 0, Infinity}], 105]]][[1]]
%o A354051 (PARI) sumpos(k=0, 1/(k^4 + 1))
%Y A354051 Cf. A256920, A113319, A354052, A354053.
%Y A354051 Cf. A002523, A255434, A354004.
%K A354051 nonn,cons
%O A354051 1,2
%A A354051 _Vaclav Kotesovec_, May 16 2022, following a suggestion from _Bernard Schott_