cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).

This page as a plain text file.
%I A354053 #13 May 20 2022 08:31:04
%S A354053 1,5,0,4,0,6,2,1,3,3,3,1,4,7,9,9,5,1,1,2,9,2,9,0,5,4,1,7,4,5,1,1,2,7,
%T A354053 0,7,5,2,4,5,4,1,4,3,6,3,8,2,0,3,5,1,9,7,5,4,5,8,6,3,5,3,5,7,8,1,8,8,
%U A354053 1,2,6,9,5,1,6,4,5,6,6,3,3,4,0,7,2,0,0,6,6,1,3,9,8,5,1,6,8,4,2,8,1,8,2,4,3
%N A354053 Decimal expansion of Sum_{k>=0} 1 / (k^8 + 1).
%F A354053 Equals 1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8.
%F A354053 Equal 3/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(8*k)-1). - _Amiram Eldar_, May 20 2022
%e A354053 1.504062133314799511292905417451127075245414363820351975458635357818812...
%p A354053 evalf(1/2 + ((sqrt(2 + sqrt(2))*sinh(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sin(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi)) + (sqrt(2 + sqrt(2))*sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2))*sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi))) * Pi/8, 100);
%t A354053 RealDigits[Chop[N[Sum[1/(k^8 + 1), {k, 0, Infinity}], 105]]][[1]]
%o A354053 (PARI) sumpos(k=0, 1/(k^8 + 1))
%Y A354053 Cf. A060890, A113319, A354051, A354052.
%K A354053 nonn,cons
%O A354053 1,2
%A A354053 _Vaclav Kotesovec_, May 16 2022