A354057 Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
Examples
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 5 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 7 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2 8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 9 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2 10 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 11 1 2 1 2 5 2 1 2 1 10 1 2 1 2 5 2 1 2 1 10 12 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 13 1 2 3 4 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4 14 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2 15 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 16 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 17 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 18 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2 19 1 2 3 2 1 6 1 2 9 2 1 6 1 2 3 2 1 18 1 2 20 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
Links
- Jianing Song, Table of n, a(n) for n = 1..5050 (the first 100 ascending diagonals)
Crossrefs
Programs
-
PARI
T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))
Formula
If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.
A327924(n,k) = Sum_{q|n} T(n,k) * (Sum_{s|n/q} mu(s)/phi(s*q)).
Comments