cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.

This page as a plain text file.
%I A354058 #35 Jul 06 2024 19:04:13
%S A354058 1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,0,3,0,1,
%T A354058 0,1,0,2,2,0,0,1,0,0,1,0,0,0,1,0,1,0,1,0,1,0,0,2,2,0,0,0,1,0,0,1,0,1,
%U A354058 0,0,0,5,0,3,0,1,0,1,0,1,0,0,0,2,0,0,0,1,0,0,1
%N A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.
%C A354058 Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354061.
%C A354058 Each column is multiplicative.
%C A354058 The n-th rows contains entirely 0's if and only if n == 2 (mod 4).
%C A354058 For n !== 2 (mod 4), T(n,psi(n)) > T(n,k) if k is not divisible by psi(n).
%C A354058 Proof: this is true if n is a prime power (see the formula below). Now suppose that n = Product_{i=1..r} (p_i)^(e_i). Since n !== 2 (mod 4), (p_i)^(e_i) != 2, so T((p_i)^(e_i),psi((p_i)^(e_i))) > 0 for each i. If k is not divisible by psi(n), then it is not divisible by some psi((p_{i_0})^(e_{i_0})), so T(n,psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi((p_i)^(e_i))) > T((p_{i_0})^(e_{i_0}),k) * Product_{i!=i_0} T((p_i)^(e_i),psi((p_i)^(e_i))) >= Product_{i=1..r} T((p_i)^(e_i),k) = T(n,k).
%H A354058 Jianing Song, <a href="/A354058/b354058.txt">Table of n, a(n) for n = 1..5050</a> (the first 100 ascending diagonals)
%F A354058 For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
%F A354058 T(n,psi(n)) = A007431(n). - _Jianing Song_, May 24 2022
%e A354058   n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
%e A354058    1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
%e A354058    2   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
%e A354058    3   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
%e A354058    4   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
%e A354058    5   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
%e A354058    6   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
%e A354058    7   0  1  2  1  0  5  0  1  2  1  0  5  0  1  2  1  0  5  0  1
%e A354058    8   0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2
%e A354058    9   0  0  2  0  0  4  0  0  2  0  0  4  0  0  2  0  0  4  0  0
%e A354058   10   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
%e A354058   11   0  1  0  1  4  1  0  1  0  9  0  1  0  1  4  1  0  1  0  9
%e A354058   12   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
%e A354058   13   0  1  2  3  0  5  0  3  2  1  0 11  0  1  2  3  0  5  0  3
%e A354058   14   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
%e A354058   15   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
%e A354058   16   0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4
%e A354058   17   0  1  0  3  0  1  0  7  0  1  0  3  0  1  0 15  0  1  0  3
%e A354058   18   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
%e A354058   19   0  1  2  1  0  5  0  1  8  1  0  5  0  1  2  1  0 17  0  1
%e A354058   20   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
%o A354058 (PARI) b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
%o A354058 T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
%Y A354058 k-th column: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
%Y A354058 Moebius transform of A354057 applied to each column.
%Y A354058 A354257 gives the smallest index for the nonzero terms in each row.
%Y A354058 Cf. A007431.
%K A354058 nonn,tabl
%O A354058 1,32
%A A354058 _Jianing Song_, May 16 2022