A354059 Square array read by ascending antidiagonals: T(n,k) is the number of elements in the multiplicative group of integers modulo n that have order k.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
The 7th, 9th, 14th and 18th rows of A354047 are {1,2,3,2,1,6,1,2,3,2,1,6,...}, so applying the Moebius transform gives {1,1,2,0,0,2,0,0,0,0,0,0,...}.
Links
- Jianing Song, Table of n, a(n) for n = 1..5050
Programs
-
PARI
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i])); T(n,k) = sumdiv(k, d, moebius(k/d)*b(n,d))
Formula
A327924(n,k) = Sum_{d|k} T(n,k)/phi(d).
Comments