cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354057 Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354060.
Each column is multiplicative.

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   3   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   4   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   5   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
   6   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   7   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
   8   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
   9   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  10   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
  11   1  2  1  2  5  2  1  2  1 10  1  2  1  2  5  2  1  2  1 10
  12   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
  13   1  2  3  4  1  6  1  4  3  2  1 12  1  2  3  4  1  6  1  4
  14   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  15   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  16   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  17   1  2  1  4  1  2  1  8  1  2  1  4  1  2  1 16  1  2  1  4
  18   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  19   1  2  3  2  1  6  1  2  9  2  1  6  1  2  3  2  1 18  1  2
  20   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
		

Crossrefs

k-th column: A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), A319101 (k=7), A247257 (k=8).
Applying Moebius transform to the rows gives A354059.
Applying Moebius transform to the columns gives A354058.
Cf. A327924.

Programs

  • PARI
    T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

Formula

If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.
A327924(n,k) = Sum_{q|n} T(n,k) * (Sum_{s|n/q} mu(s)/phi(s*q)).

A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)).
The n-th row contains entirely 0's if and only if n == 2 (mod 4).
If n !== 2 (mod 4), T(n,psi(n)) > T(n,k) for 1 <= k < psi(n).

Examples

			Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
		

Crossrefs

A354257 gives the smallest index for the nonzero terms in each row.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Showing 1-2 of 2 results.