A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.
1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1
Examples
Table starts n = 1: 1; n = 2: 0; n = 3: 0, 1; n = 4: 0, 1; n = 5: 0, 1, 0, 3; n = 6: 0, 0; n = 7: 0, 1, 2, 1, 0, 5; n = 8: 0, 2; n = 9: 0, 0, 2, 0, 0, 4; n = 10: 0, 0, 0, 0; n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9; n = 12: 0, 1; n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11; n = 14: 0, 0, 0, 0, 0, 0; n = 15: 0, 1, 0, 3; n = 16: 0, 0, 0, 4; n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15; n = 18: 0, 0, 0, 0, 0, 0; n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17; n = 20: 0, 1, 0, 3; ...
Links
- Jianing Song, Table of n, a(n) for n = 1..8346 (the first 200 rows)
Crossrefs
Programs
-
PARI
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i])); T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
Formula
For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Comments