cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)).
The n-th row contains entirely 0's if and only if n == 2 (mod 4).
If n !== 2 (mod 4), T(n,psi(n)) > T(n,k) for 1 <= k < psi(n).

Examples

			Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
		

Crossrefs

A354257 gives the smallest index for the nonzero terms in each row.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022