cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354063 Product_{n>=1} 1 / (1 - x^(2*n))^(a(n)/(2*n)!) = cos(x).

This page as a plain text file.
%I A354063 #6 May 17 2022 07:25:41
%S A354063 -1,4,104,1408,354944,-21642752,6204652544,68669145088,47215125069824,
%T A354063 -78465506362130432,51085990673656315904,-6994033618612756938752,
%U A354063 15510963121850795776016384,-7220202338641080038690127872,-7469518701197092988127633473536,11962377309169877924807975108608
%N A354063 Product_{n>=1} 1 / (1 - x^(2*n))^(a(n)/(2*n)!) = cos(x).
%F A354063 E.g.f.: Sum_{k>=1} mu(k) * log(cos(x^k)) / k (even powers only).
%t A354063 nmax = 32; Take[CoefficientList[Series[Sum[MoebiusMu[k] Log[Cos[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}] // Rest
%Y A354063 Cf. A170912, A170913, A354055, A354056, A354064, A354065, A354066.
%K A354063 sign
%O A354063 1,2
%A A354063 _Ilya Gutkovskiy_, May 16 2022