cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354065 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).

This page as a plain text file.
%I A354065 #6 May 17 2022 07:25:50
%S A354065 1,-2,2,-8,56,-496,3184,-22784,273920,-4539136,48104704,-506000384,
%T A354065 10591523840,-204528633856,2888557717504,-53417657237504,
%U A354065 1249919350046720,-28453501844586496,624022403933077504,-13729309300086800384,372737701735949926400,-11010228423219933085696
%N A354065 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).
%F A354065 E.g.f.: Sum_{k>=1} mu(k) * log(1 + tan(x^k)) / k.
%t A354065 nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Tan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%Y A354065 Cf. A000182, A003707, A009006, A353583, A353584, A353611, A353911, A354055, A354056, A354063, A354064, A354066.
%K A354065 sign
%O A354065 1,2
%A A354065 _Ilya Gutkovskiy_, May 16 2022