cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

This page as a plain text file.
%I A354068 #16 Mar 20 2023 21:06:19
%S A354068 1,0,0,4,5,0,8,8,14
%N A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
%C A354068 An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate.
%C A354068 a(10) <= 60, a(11) <= 279, a(12) <= 588, a(13) <= 9610.
%C A354068 Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= a(n) <= A360220(n) <= A287648(n). - _Eduard I. Vatutin_, Mar 03 2023
%H A354068 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1709">About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11</a> (in Russian).
%H A354068 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
%H A354068 Eduard I. Vatutin, <a href="/A354068/a354068.txt">Proving list (best known examples)</a>.
%H A354068 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A354068 One of the best orthogonal diagonal Latin squares of order n=9
%e A354068   0 1 2 3 4 5 6 7 8
%e A354068   1 2 3 8 6 4 7 0 5
%e A354068   5 4 6 0 7 8 3 1 2
%e A354068   7 3 1 5 2 6 0 8 4
%e A354068   8 7 4 6 1 2 5 3 0
%e A354068   3 0 5 4 8 7 1 2 6
%e A354068   4 6 7 2 3 0 8 5 1
%e A354068   6 5 8 1 0 3 2 4 7
%e A354068   2 8 0 7 5 1 4 6 3
%e A354068 has orthogonal diagonal mate
%e A354068   0 1 2 3 4 5 6 7 8
%e A354068   2 3 8 7 5 6 4 1 0
%e A354068   1 5 4 8 6 0 2 3 7
%e A354068   8 7 0 6 1 3 5 4 2
%e A354068   5 0 1 2 7 8 3 6 4
%e A354068   4 6 7 0 3 2 8 5 1
%e A354068   3 8 5 4 0 7 1 2 6
%e A354068   7 4 6 5 2 1 0 8 3
%e A354068   6 2 3 1 8 4 7 0 5
%e A354068 and 14 diagonal transversals, which is the minimal number, so a(9)=14.
%Y A354068 Cf. A287647, A287648, A345370, A349199, A360220.
%K A354068 nonn,more,hard
%O A354068 1,4
%A A354068 _Eduard I. Vatutin_, May 16 2022