cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354089 Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)).

This page as a plain text file.
%I A354089 #9 May 17 2022 17:50:09
%S A354089 1,4,6,13,14,24,8,40,31,56,12,78,18,32,84,121,30,124,20,182,48,48,24,
%T A354089 240,183,72,156,104,38,336,32,364,72,120,112,403,42,80,108,560,54,192,
%U A354089 44,156,434,96,48,726,57,732,180,234,62,624,168,320,120,152,60,1092,74,128,248,1093,252,288,68,390,144,448,72
%N A354089 Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)).
%H A354089 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A354089 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A354089 Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A348744(A000720(p)).
%F A354089 a(n) = A000203(A348746(n)).
%F A354089 a(n) = Sum_{d|n} A348746(d).
%o A354089 (PARI)
%o A354089 A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
%o A354089 A354089(n) = sigma(A348746(n));
%Y A354089 Inverse Möbius transform of A348746.
%Y A354089 Cf. A000203, A000720, A348744, A354088.
%Y A354089 Cf. A003973, A354093 for variants.
%K A354089 nonn,mult
%O A354089 1,2
%A A354089 _Antti Karttunen_, May 17 2022