This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354089 #9 May 17 2022 17:50:09 %S A354089 1,4,6,13,14,24,8,40,31,56,12,78,18,32,84,121,30,124,20,182,48,48,24, %T A354089 240,183,72,156,104,38,336,32,364,72,120,112,403,42,80,108,560,54,192, %U A354089 44,156,434,96,48,726,57,732,180,234,62,624,168,320,120,152,60,1092,74,128,248,1093,252,288,68,390,144,448,72 %N A354089 Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)). %H A354089 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A354089 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A354089 Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A348744(A000720(p)). %F A354089 a(n) = A000203(A348746(n)). %F A354089 a(n) = Sum_{d|n} A348746(d). %o A354089 (PARI) %o A354089 A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); }; %o A354089 A354089(n) = sigma(A348746(n)); %Y A354089 Inverse Möbius transform of A348746. %Y A354089 Cf. A000203, A000720, A348744, A354088. %Y A354089 Cf. A003973, A354093 for variants. %K A354089 nonn,mult %O A354089 1,2 %A A354089 _Antti Karttunen_, May 17 2022