This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354095 #5 May 17 2022 17:50:30 %S A354095 1,3,1,7,3,3,1,6,13,9,3,7,7,3,3,31,9,39,2,21,1,9,3,6,31,21,2,7,6,9,1, %T A354095 63,3,27,3,91,19,6,7,18,21,3,5,21,39,9,3,31,57,93,9,49,27,6,9,6,2,18, %U A354095 6,21,31,3,13,127,21,9,11,63,3,9,9,78,37,57,31,14,3,21,2,93,25,63,21,7,27,15,6,18,18,117,7 %N A354095 a(n) = A354092(sigma(n)). %H A354095 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A354095 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A354095 Multiplicative with a(p^e) = A354092(1 + p + p^2 + ... + p^e). %F A354095 a(n) = A354092(A000203(n)). %F A354095 For all n >= 1, A010872(a(n)) = A010872(A354096(n)), A007949(a(n)) = A007949(A000203(n)). %o A354095 (PARI) A354095(n) = { my(f=factor(sigma(n))); for(k=1,#f~, if(2==(f[k,1]%3), if(2==f[k,1], f[k,1]--, forstep(i=primepi(f[k,1])-1,0,-1,if(2==(prime(i)%3), f[k,1]=prime(i); break))))); factorback(f); }; %Y A354095 Cf. A000203, A007949, A010872, A354092, A354093, A354096. %Y A354095 Cf. also A350073. %K A354095 nonn,mult %O A354095 1,2 %A A354095 _Antti Karttunen_, May 17 2022