cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354117 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + arctan(x).

This page as a plain text file.
%I A354117 #8 May 18 2022 10:06:37
%S A354117 1,-2,-2,8,-16,176,-832,384,8192,447744,-4228608,-15860736,-398991360,
%T A354117 10938421248,44581613568,-29064658944,-17762113880064,-18092698632192,
%U A354117 -7331825098948608,-64037289416196096,3154526750647517184,91791873021766533120,-1278044473427380666368
%N A354117 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + arctan(x).
%F A354117 E.g.f.: Sum_{k>=1} mu(k) * log(1 + arctan(x^k)) / k.
%t A354117 nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + ArcTan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%Y A354117 Cf. A010050, A110708, A353820, A353915, A354065, A354115, A354116, A354118.
%K A354117 sign
%O A354117 1,2
%A A354117 _Ilya Gutkovskiy_, May 17 2022