This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354135 #10 May 18 2022 13:12:47 %S A354135 1,0,0,0,0,1,-15,175,-1960,22449,-269073,3403070,-45510630,643152796, %T A354135 -9586136560,150319669136,-2473024029840,42562037379744, %U A354135 -764017130370276,14260496108114340,-275877454002406236,5512350021871343616,-113318466860425703184 %N A354135 Expansion of e.g.f. 1/(1 - log(1 + x)^5/120). %F A354135 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling1(k,5) * a(n-k). %F A354135 a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling1(n,5*k)/120^k. %o A354135 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^5/120))) %o A354135 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 5, 1)*v[i-j+1])); v; %o A354135 (PARI) a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1)/120^k); %Y A354135 Cf. A006252, A354134. %Y A354135 Cf. A346920, A346924. %K A354135 sign %O A354135 0,7 %A A354135 _Seiichi Manyama_, May 18 2022