This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354141 #25 May 21 2022 14:53:17 %S A354141 1,2,3,5,9,22,31,61,121,247,479,951,1862,3802,7431,15180,29723,59766, %T A354141 118893,239999,475573,959341,1902293,3835229,7609175,15268473, %U A354141 30436701,61001391 %N A354141 Indices of terms in A352808 that are powers of 2. %C A354141 Every power of 2 will eventually appear in A353730, so the sequence is infinite. %H A354141 Rémy Sigrist, <a href="/A354141/a354141.txt">C++ program</a> %o A354141 (Python) %o A354141 from itertools import count, islice %o A354141 def ispow2(k): return bin(k).count("1") == 1 %o A354141 def agen(): # generator of terms %o A354141 A352808lst = [0, 1]; A352808set = {0, 1} %o A354141 k, mink, p = 1, 2, 2 %o A354141 for n in count(2): %o A354141 if ispow2(k): yield n-1 %o A354141 ahalf, k = A352808lst[n//2], mink %o A354141 while k in A352808set or k&ahalf: k += 1 %o A354141 A352808lst.append(k); A352808set.add(k) %o A354141 while mink in A352808set: mink += 1 %o A354141 print(list(islice(agen(), 8))) # _Michael S. Branicky_, May 18 2022 %o A354141 (C++) See Links section. %Y A354141 Cf. A352808, A353734. %K A354141 nonn,more %O A354141 1,2 %A A354141 _N. J. A. Sloane_, May 18 2022 %E A354141 a(16)-a(22) from _Michael S. Branicky_, May 19 2022 %E A354141 a(23)-a(28) from _Rémy Sigrist_, May 21 2022