cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354147 Expansion of e.g.f. 1/(1 - 4 * log(1+x)).

This page as a plain text file.
%I A354147 #16 Jun 04 2022 02:20:12
%S A354147 1,4,28,296,4168,73376,1550048,38202048,1076017344,34096092672,
%T A354147 1200459182592,46492497859584,1964295942558720,89906908894150656,
%U A354147 4431634108980264960,234044235939806232576,13184410813249253031936,789137065405617987354624
%N A354147 Expansion of e.g.f. 1/(1 - 4 * log(1+x)).
%F A354147 a(0) = 1; a(n) = 4 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
%F A354147 a(n) = Sum_{k=0..n} 4^k * k! * Stirling1(n, k).
%F A354147 a(n) ~ n! * exp(1/4) / (4 * (exp(1/4)-1)^(n+1)). - _Vaclav Kotesovec_, Jun 04 2022
%o A354147 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-4*log(1+x))))
%o A354147 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
%o A354147 (PARI) a(n) = sum(k=0, n, 4^k*k!*stirling(n, k, 1));
%Y A354147 Column k=4 of A320080.
%Y A354147 Cf. A094417, A354240, A354264.
%K A354147 nonn
%O A354147 0,2
%A A354147 _Seiichi Manyama_, May 21 2022