A354154 a(1) = 0; for n>1, a(n) = prime(n-1) - A090252(n).
0, 0, 0, 0, 3, 4, 4, 6, 6, 6, 21, 12, 14, 16, 22, 18, 22, 22, 20, 24, 24, 20, 63, 24, 28, 30, 30, 30, 52, 30, 86, 78, 48, 48, 42, 48, 48, 50, 54, 54, 46, 48, 44, 52, 44, 46, 173, 54, 60, 60, 56, 54, 58, 50, 58, 60, 64, 58, 186, 156, 58, 56, 236, 78, 150, 80, 78, 90, 86, 90, 86, 84, 88, 90, 92, 96, 90, 82, 86, 88, 92, 88, 84, 84, 84, 86, 84, 82, 84
Offset: 1
Keywords
Examples
A090252 begins 1, 2, 3, 5, 4, 7, 9, 11, 13, ... and we subtract these numbers from 1, 2, 3, 5, 7, 11, 13, 17, 19, ... to get 0, 0, 0, 0, 3, 4, 4, 6, 6, ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A090252.
Programs
-
Python
from math import gcd, prod from sympy import isprime, nextprime from itertools import count, islice def agen(): # generator of terms alst, aset, mink, p = [1], {1}, 2, 1 yield 0 for n in count(2): k, s, p = mink, n - n//2, nextprime(p) prodall = prod(alst[n-n//2-1:n-1]) while k in aset or gcd(prodall, k) != 1: k += 1 alst.append(k); aset.add(k); yield p - k while mink in aset: mink += 1 print(list(islice(agen(), 89))) # Michael S. Branicky, May 28 2022
Comments