This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354156 #20 May 31 2022 18:23:45 %S A354156 37,61,89,101,109,113,149,157,173,181,193,197,233,269,277,293,317,337, %T A354156 349,353,373,389,401,421,433,509,557,569,577,593,601,613,641,673,701, %U A354156 709,757,761,773,797,821,829,877,881,937,941,977,1009,1013,1033,1049,1061 %N A354156 Primes p == 1 (mod 4) which are not Lagrange primes. %D A354156 J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.5. %H A354156 Michael S. Branicky, <a href="/A354156/b354156.txt">Table of n, a(n) for n = 1..5383</a> %o A354156 (Python) %o A354156 from itertools import islice %o A354156 from sympy import factorial, nextprime %o A354156 def agen(): # generator of terms %o A354156 p = 5 %o A354156 while True: %o A354156 X = (p-1)//2 %o A354156 Xf = factorial(X)**2 %o A354156 if any(pow(factorial(Y), 2, p)+1 == p for Y in range(X-1, 0, -1)): %o A354156 yield p %o A354156 p = nextprime(p) %o A354156 while p%4 != 1: %o A354156 p = nextprime(p) %o A354156 print(list(islice(agen(), 5))) # _Michael S. Branicky_, May 30 2022 %Y A354156 This is the complement of A354155 in A002144. %K A354156 nonn %O A354156 1,1 %A A354156 _N. J. A. Sloane_, May 29 2022, based on Section 18.5 of Cosgrave (2022) %E A354156 a(26) and beyond from _Michael S. Branicky_, May 30 2022