A354160 Products of exactly two distinct primes in A090252, in order of appearance.
21, 55, 26, 85, 57, 161, 319, 217, 481, 205, 731, 517, 159, 1121, 1403, 871, 355, 1241, 869, 2407, 1691, 413, 3007, 2323, 206, 1391, 4033, 565, 5207, 2227, 5891, 6533, 4321, 453, 1007, 623, 4867, 2231, 6161, 2119, 11189, 6401, 12709, 7421, 2159, 9563, 8213, 1507, 15247, 9259, 4031, 12367, 597, 2869, 11183, 1561, 13393, 7099, 3611, 14213, 478, 24823
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2517
- Michael De Vlieger, Annotated log-log scatterplot of A090252(n), n = 1..2^12, labeling primes in red, highlighting composite prime powers in gold, squarefree semiprimes in green and labeling them in boldface.
Programs
-
Mathematica
Select[Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 2000, -1]], PrimeNu[#] == PrimeOmega[#] == 2 &] (* Michael De Vlieger, Jun 16 2022 *)
-
Python
from itertools import count, islice from collections import deque from math import gcd, lcm from sympy import factorint def A354160_gen(): # generator of terms aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True while True: for m in count(c): if m not in aset and gcd(m,b) == 1: if len(fm := factorint(m)) == sum(fm.values()) == 2: yield m aset.add(m) aqueue.append(m) if f: aqueue.popleft() b = lcm(*aqueue) f = not f while c in aset: c += 1 break A354160_list = list(islice(A354160_gen(),25)) # Chai Wah Wu, May 31 2022
Comments