cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354168 Let M_p = 2^p-1 be a Mersenne prime, where p is an odd prime. Sequence lists p such that b_{p-2} == -2^((p+1)/2) mod M_p, where {b_k} is defined in the Comments.

Original entry on oeis.org

7, 17, 19, 89, 107, 521, 607, 1279, 2281, 3217, 4423, 9689, 11213, 21701, 44497, 216091, 859433, 1257787, 24036583, 30402457, 32582657, 42643801, 57885161, 74207281, 82589933
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2022, based on Section 16.1 of Cosgrave (2022)

Keywords

Comments

Let M_p = 2^p-1 (not necessarily a prime) where p is an odd prime, and define b_1 = 4; b_k = b_{k-1}^2 - 2 (mod M_p) for k >= 2.
The Lucas-Lehmer theorem says that M_p is a prime iff b_{p-1} == 0 (mod M_p).
Furthermore, if M_p is a prime, then b_{p-2} is congruent to +- 2^((p+1)/2) (mod M_p).
This partitions the Mersenne prime exponents A000043 into two classes, listed here and in A354167.

References

  • J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 16.1.

Crossrefs

Cf. A123271 (sign of the penultimate term of the Lucas-Lehmer sequence).

Extensions

Thanks to Chai Wah Wu for several corrections. - N. J. A. Sloane, Jun 02 2022
a(16) from Chai Wah Wu, Jun 03 2022
a(17)-a(18) from Chai Wah Wu, Jun 04 2022
a(19)-a(25) from Serge Batalov, Jun 11 2022